Network Intrusion Detection using a Secure Ranking of Hidden Outliers

نویسندگان

  • Marwan Hassani
  • Thomas Seidl
چکیده

Network intrusion detection has recently attracted a lot of attention in both research and industry of computer network security. By intrusion, attackers try to perform malicious activities inside the network using harmless-looking connections. Network intrusion detection systems try to differentiate these attacks from normal connections by grouping them into families based on similarity. As new forms of intrusions different from the already detected ones are usually seen, clustering of network connections is widely used to deal with that. In data mining, clustering aims at dividing objects into different groups (called clusters) such that objects in one cluster are similar to each other and dissimilar to objects from other clusters. Some sparse objects deviate from all available clusters and are not dense enough to form a new cluster. These objects are called outliers and they usually do not belong to any of available clusters. For network security, when clustering the connections in the network, many connections could be considered as outliers when compared to the clusters of normal connections but nevertheless they are not real intrusions. Considering every outlier connection as a network intrusion will result in too many false alarms. Previous solutions which handled this problem were not effective enough for detecting intrusions which are hidden in subspaces of the connection data. We suggest an oultier ranking algorithm for ranking these outlier connections. Using a scoring function, our algorithm gives higher degree of “outlierness” for strongly-deviated outliers hidden in subspaces of the network connection data. We see another challenge when seeking for intrusions in the network. Attackers usually try slight modifications of previously-successful intrusions for producing new attacks. Our novel scoring function carefully gives higher degree of outlierness for outliers found in subspaces which contain known intrusions. Thus we should considerably reduce false alarms since only strongly-deviated outliers and outliers detected in suspected subspaces of the connections will be considered as intrusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Avoiding Cyber-attacks to DMZ and Capturing Forensics from Intruders Using Honeypots

Nowadays, honeypots are widely used to divert attackers from the original target and keep them busy within a decoy environment. DeMilitarized Zone (DMZ) is an important zone for network administrators, because many of the services to the public network is provided at this zone. Many of the security tools such as firewalls, intrusion detection systems and several other secu...

متن کامل

Avoiding Cyber-attacks to DMZ and Capturing Forensics from Intruders Using Honeypots

Nowadays, honeypots are widely used to divert attackers from the original target and keep them busy within a decoy environment. DeMilitarized Zone (DMZ) is an important zone for network administrators, because many of the services to the public network is provided at this zone. Many of the security tools such as firewalls, intrusion detection systems and several other secu...

متن کامل

MHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security

Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010